
HealthyOcean TOKEN
February 15, 2024

Audit Status: Pass

RISK ANALYSIS HealthyOcean.

 Classifications of Manual Risk Results

 Classification Description

 Critical Danger or Potential Problems.

 High Be Careful or Fail test.

 Medium Improve is needed.

 Low Pass, Not-Detected or Safe Item.

 Informational Function Detected

 Manual Code Review Risk Results

 Contract Security Description

 Buy Tax 5%

 Sale Tax 5%

 Cannot Buy Pass

 Cannot Sale Pass

 Max Tax 10%

 Modify Tax No

 Fee Check Pass

 Is Honeypot? Not Detected

 Trading Cooldown Not Detected

 Enable Trade? False

 Pause Transfer? Detected

Page 1 of 24CFG.NINJA

https://CFG.NINJA/

 Contract Security Description

 Max Tx? Pass

 Is Anti Whale? Not Detected

 Is Anti Bot? Not Detected

 Is Blacklist? Not Detected

 Blacklist Check Pass

 is Whitelist? Pass

 Can Mint? Pass

 Is Proxy? Not Detected

 Can Take Ownership? Not Detected

 Hidden Owner? Not Detected

 Owner 0x5b33e897501EAC2FeD8B4e904d65D0F6F2e54D69

 Self Destruct? Not Detected

 External Call? Detected

 Other? Not Detected

 Holders 1

 Audit Confidence Medium

 Authority Check Pass

 Freeze Check Pass

The summary section reveals the strengths and weaknesses identified during the assessment, including any vulnerabilities or
potential risks that may exist. It serves as a valuable snapshot of the overall security status of the audited project. However, it is
highly recommended to read the entire security assessment report for a comprehensive understanding of the findings. The full
report provides detailed insights into the assessment process, methodology, and specific recommendations for addressing the
identified issues.

Page 2 of 24CFG.NINJA

https://CFG.NINJA/

CFG Ninja Verified on February 15, 2024

HealthyOcean

Executive Summary

TYPES ECOSYSTEM LANGUAGE

DeFi BNBCHAIN Solidity

Timeline

Audit Request Onboarding Process Audit Preview Audit Release
2024-02-02 2024-02-10 2024-02-10 2024-02-11

Vulnerability Summary

4 0 4 4
Total Findings Resolved Pending Unresolved

1 Critical
0 Resolved, 1 Pending Critical risks are the most severe and can have a significant impact on the smart

contracts functionality, security, or the entire system. These vulnerabilities can lead
to the loss of user funds, unauthorized access, or complete system compromise.

0 High
High-risk vulnerabilities have the potential to cause significant harm to the smart
contract or the system. While not as severe as critical risks, they can still result in
financial losses, data breaches, or denial of service attacks.

0 Medium
Medium-risk vulnerabilities pose a moderate level of risk to the smart contracts
security and functionality. They may not have an immediate and severe impact but
can still lead to potential issues if exploited. These risks should be addressed to
ensure the contracts overall security.

2 Low
0 Resolved, 2 Pending Low-risk vulnerabilities have a minimal impact on the smart contracts security and

functionality. They may not pose a significant threat, but it is still advisable to address
them to maintain a robust security posture.

1 Informational
0 Resolved, 1 Pending Informational risks are not actual vulnerabilities but provide useful information about

potential improvements or best practices. These findings may include suggestions
for code optimizations, documentation enhancements, or other non-critical areas for
improvement.

Page 3 of 24CFG.NINJA

https://CFG.NINJA/

Token Distribution

Burn
Burned amount send to the
deadWallet.

0%

Liquidity
Liquidity tokens are split from
sale into the pool.

0%

Development and Ecosystem
Ecosystem

0%

Fairlaunch
Tokens allocated for the sale.

0%

Team and Advisors
Teams

0%

Community and Partnerships
Community

0%

Total Unlock Progress

 Unlocked 0 0%

 Total Locked 100000000 10%

 Untracked 900000000 90%

Page 4 of 24CFG.NINJA

https://CFG.NINJA/

PROJECT OVERVIEW HealthyOcean.

 Token Summary

 Parameter Result

 Address 0x9f8a2aeA53cE5F92964593746F74Bb0E4d958285

 Name HealthyOcean

 Token Tracker HealthyOcean (HLO)

 Decimals 9

 Supply 1,000,000,000

 Platform BNBCHAIN

 Compiler v0.8.19+commit.7dd6d404

 Contract Name HealthyOcean

 Optimization Yes with 200 runs

 LicenseType MIT

 Language Solidity

 Codebase https://bscscan.com/
address/0x9f8a2aea53ce5f92964593746f74bb0e4d958285#code

Page 5 of 24CFG.NINJA

https://CFG.NINJA/

 Main Contract Assessed

 Name Contract Live

 HealthyOcean 0x9f8a2aeA53cE5F92964593746F74Bb0E4d958285 Yes

 TestNet Contract Assessed

 Name Contract Live

 HealthyOcean 0x6b2bb74Fc6Eff726d5eCa1D81550e7ADe0e428f5 Yes

 Solidity Code Provided

 SolID File Sha-1 FileName

 HealthyOcean 26d21cf7d07fb9188a50efcb3135ea40820e9e3c HLO.sol

Page 6 of 24CFG.NINJA

https://CFG.NINJA/

 Call Graph

The Smart Contract Graph is a visual representation of the interconnectedness and relationships between
smart contracts within a blockchain network. It provides a comprehensive view of the interactions and
dependencies between different smart contracts, allowing developers and users to analyze and understand
the flow of data and transactions within the network. The Smart Contract Graph enables better
transparency, security, and efficiency in decentralized applications by facilitating the identification of
potential vulnerabilities, optimizing contract execution, and enhancing overall network performance.

Page 7 of 24CFG.NINJA

https://CFG.NINJA/

 Inheritance Check

Smart contract inheritance is a concept in blockchain programming where one smart contract can inherit
properties and functionalities from another existing smart contract. This allows for code reuse and
modularity, making the development process more efficient and scalable. Inheritance enables the child
contract to access and utilize the variables, functions, and modifiers defined in the parent contract, thereby
inheriting its behavior and characteristics. This feature is particularly useful in complex decentralized
applications (dApps) where multiple contracts need to interact and share common functionalities. By
leveraging smart contract inheritance, developers can create more organized and maintainable code
structures, promoting code reusability and reducing redundancy.

Page 8 of 24CFG.NINJA

https://CFG.NINJA/

Smart Contract Vulnerability Details SWC-103 - Floating Pragma.

CWE-664: Improper Control of a Resource Through its Lifetime.

References:

Description:

Contracts should be deployed with the same compiler version and flags that they have
been tested with thoroughly. Locking the pragma helps to ensure that contracts do not
accidentally get deployed using, for example, an outdated compiler version that might
introduce bugs that affect the contract system negatively.

Remediation:

Lock the pragma version and also consider known bugs (https://github.com/ethereum/
solidity/releases) for the compiler version that is chosen.

 Pragma statements can be allowed to float when a contract is intended for consumption
by other developers, as in the case with contracts in a library or EthPM package.
Otherwise, the developer would need to manually update the pragma in order to compile
locally.

References:

Ethereum Smart Contract Best Practices - Lock pragmas to specific compiler version.

Page 9 of 24CFG.NINJA

https://consensys.github.io/smart-contract-best-practices/recommendations/#lock-pragmas-to-specific-compiler-version
https://CFG.NINJA/

SMART CONTRACT VULNERABILITY DETAILS HealthyOcean.

 SWC-108 - State Variable Default Visibility.

CWE-710: Improper Adherence to Coding Standards

Description:

Labeling the visibility explicitly makes it easier to catch incorrect assumptions about who
can access the variable.

Remediation:

Variables can be specified as being public, internal or private. Explicitly define visibility for
all state variables.

References:

Ethereum Smart Contract Best Practices - Explicitly mark visibility in functions and state
variables

Page 10 of 24CFG.NINJA

https://cwe.mitre.org/data/definitions/710.html
https://consensys.github.io/smart-contract-best-practices/recommendations/#explicitly-mark-visibility-in-functions-and-state-variables
https://consensys.github.io/smart-contract-best-practices/recommendations/#explicitly-mark-visibility-in-functions-and-state-variables
https://CFG.NINJA/

Smart Contract Vulnerability Details SWC-115 - Authorization
through tx.origin.

CWE-477: Use of Obsolete Function

Description:

tx.origin is a global variable in Solidity which returns the address of the account that sent
the transaction. Using the variable for authorization could make a contract vulnerable if an
authorized account calls into a malicious contract. A call could be made to the vulnerable
contract that passes the authorization check since tx.origin returns the original sender of
the transaction which in this case is the authorized account.

Remediation:

tx.origin should not be used for authorization. Use msg.sender instead.

References:

Solidity Documentation - tx.origin

Ethereum Smart Contract Best Practices - Avoid using tx.origin

SigmaPrime - Visibility.

Page 11 of 24CFG.NINJA

https://cwe.mitre.org/data/definitions/477.html
https://solidity.readthedocs.io/en/develop/security-considerations.html#tx-origin
https://consensys.github.io/smart-contract-best-practices/recommendations/#avoid-using-txorigin
https://github.com/sigp/solidity-security-blog#tx-origin
https://CFG.NINJA/

Smart Contract Vulnerability Details SWC-120 - Weak Sources of
Randomness from Chain Attributes.

CWE-330: Use of Insufficiently Random Values

Description:

Solidity allows for ambiguous naming of state variables when inheritance is used. Contract
A with a variable x could inherit contract B that also has a state variable x defined. This
would result in two separate versions of x, one of them being accessed from contract A
and the other one from contract B. In more complex contract systems this condition could
go unnoticed and subsequently lead to security issues.

 Shadowing state variables can also occur within a single contract when there are
multiple definitions on the contract and function level.

Remediation:

Using commitment scheme, e.g. RANDAO. Using external sources of randomness via
oracles, e.g. Oraclize. Note that this approach requires trusting in oracle, thus it may be
reasonable to use multiple oracles. Using Bitcoin block hashes, as they are more
expensive to mine.

References:

How can I securely generate a random number in my smart contract?)

When can BLOCKHASH be safely used for a random number? When would it be unsafe?

The Run smart contract.

Page 12 of 24CFG.NINJA

https://cwe.mitre.org/data/definitions/330.html
https://ethereum.stackexchange.com/questions/191/how-can-i-securely-generate-a-random-number-in-my-smart-contract
https://ethereum.stackexchange.com/questions/419/when-can-blockhash-be-safely-used-for-a-random-number-when-would-it-be-unsafe
https://etherscan.io/address/0xcac337492149bdb66b088bf5914bedfbf78ccc18
https://CFG.NINJA/

Smart Contract Vulnerability Details SWC-123 - Requirement
Violation.

CWE-573: Improper Following of Specification by Caller

Description:

The Solidity require() construct is meant to validate external inputs of a function. In most
cases, such external inputs are provided by callers, but they may also be returned by
callees. In the former case, we refer to them as precondition violations. Violations of a
requirement can indicate one of two possible issues:

 A bug exists in the contract that provided the external input.
 The condition used to express the requirement is too strong.

Remediation:

If the required logical condition is too strong, it should be weakened to allow all valid
external inputs.Otherwise, the bug must be in the contract that provided the external
input and one should consider fixing its code by making sure no invalid inputs are provided.

References:

The use of revert(), assert(), and require() in Solidity, and the new REVERT opcode in the
EVM

Page 13 of 24CFG.NINJA

https://cwe.mitre.org/data/definitions/573.html
https://media.consensys.net/when-to-use-revert-assert-and-require-in-solidity-61fb2c0e5a57
https://media.consensys.net/when-to-use-revert-assert-and-require-in-solidity-61fb2c0e5a57
https://CFG.NINJA/

TECHNICAL FINDINGS HealthyOcean.

Smart contract security audits classify risks into several categories: Critical, High, Medium, Low, and
Informational. These classifications help assess the severity and potential impact of vulnerabilities found in
smart contracts.

 Classification of Risk

 Severity Description

Critical

Critical risks are the most severe and can have a significant impact on the smart
contracts functionality, security, or the entire system. These vulnerabilities can
lead to the loss of user funds, unauthorized access, or complete system
compromise.

High

High-risk vulnerabilities have the potential to cause significant harm to the smart
contract or the system. While not as severe as critical risks, they can still result in
financial losses, data breaches, or denial of service attacks.

Medium

Medium-risk vulnerabilities pose a moderate level of risk to the smart contracts
security and functionality. They may not have an immediate and severe impact
but can still lead to potential issues if exploited. These risks should be addressed
to ensure the contracts overall security.

Low

Low-risk vulnerabilities have a minimal impact on the smart contracts security
and functionality. They may not pose a significant threat, but it is still advisable to
address them to maintain a robust security posture.

Informational

Informational risks are not actual vulnerabilities but provide useful information
about potential improvements or best practices. These findings may include
suggestions for code optimizations, documentation enhancements, or other non-
critical areas for improvement.

By categorizing risks into these classifications, smart contract security audits can prioritize the resolution of
critical and high-risk vulnerabilities to ensure the contract's overall security and protect user funds and data.

Page 14 of 24CFG.NINJA

https://CFG.NINJA/

 HLO-02 | Function Visibility Optimization.

Category Severity Location Status

Gas Optimization Informational HLO.sol: L: 350 C: 14, L: 368
C: 14, L: 586 C: 14, L: 627 C:
14

 Detected

Description

The following functions are declared as public and are not invoked in any of the contracts
contained within the projects scope:

 Function Name Parameters Visibility

setInitializer address init Public

setExcludedFromFees address account, bool enabled Public

enableTrading Publice

setExcludedFromReward address account, bool enabled Public

The functions that are never called internally within the contract should have external visibility

Recommendation

We advise that the function's visibility specifiers are set to external, and the array-based
arguments change their data location from memory to calldata, optimizing the gas cost of
the function.

Mitigation

References:

external vs public best practices.

Page 15 of 24CFG.NINJA

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices
https://CFG.NINJA/

 HLO-03 | Lack of Input Validation.

Category Severity Location Status

Volatile
Code

 Low HLO.sol: L: 306 C: 14, L: 368
C: 14, L: 372 C: 14, L: 380 C:
14, L: 384 C: 14, L: 388 C: 14,
L: 392 C: 14, L: 420 C: 14, L:
426 C: 14, L: 430 C: 14

 Detected

Description

The given input is missing the check for the non-zero address.

The given input is missing the check for the onlyOwners need to be revisited for require..

Recommendation

We advise the client to add the check for the passed-in values to prevent unexpected
errors as below:
 ...
 require(receiver != address(0), "Receiver is the zero address");
 ...
 ...
 require(value X limitation, "Your not able to do this function");
 ...

We also recommend customer to review the following function that is missing a required
validation. onlyOwners need to be revisited for require..

Mitigation

References:

Zero Address check. The danger!!!

Page 16 of 24CFG.NINJA

https://blackadam.hashnode.dev/zero-address-check-the-danger
https://CFG.NINJA/

 HLO-05 | Missing Event Emission.

Category Severity Location Status

Volatile
Code

 Low HLO.sol: L: 306 C: 14, L: 319
C: 14, L: 335 C: 14, L: 350 C:
14, L: 368 C: 14, L: 372 C: 14,
L: 380 C: 14, L: 384 C: 14, L:
388 C: 14, L: 392 C: 14, L:
406 C: 14, L: 415 C: 14, L: 426
C: 14, L: 430 C: 14, L: 435 C:
14, L: 586 C: 14, L: 602 C: 14,
L: 607 C: 14, L: 615 C: 14, L:
627 C: 14

 Detected

Description

Detected missing events for critical arithmetic parameters. There are functions that have
no event emitted, so it is difficult to track off-chain changes.The linked code does not
create an event for the transfer.

Recommendation

Emit an event for critical parameter changes. It is recommended emitting events for the
sensitive functions that are controlled by centralization roles.

Mitigation

References:

Understanding Events in Smart Contracts

Page 17 of 24CFG.NINJA

https://blog.solidityscan.com/understanding-events-in-smart-contracts-26e8d50b3eef
https://CFG.NINJA/

 HLO-18 | Stop Transactions by using Enable Trade.

Category Severity Location Status

Logical
Issue

 Critical HLO.sol: L: 586 C: 14, L: 176
C: 17

 Detected

Description

Enable Trade is present on the following contract and when combined with Exclude from
fees it can be considered a whitelist process, this will allow anyone to trade before others
and can represent and issue for the holders.

Recommendation

We recommend the project owner to carefully review this function and avoid problems
when performing both actions.

Mitigation

References:

Writing Clean Code for Solidity: Best Practices for Solidity Development

Page 18 of 24CFG.NINJA

https://medium.com/@solidity101/writing-clean-code-for-solidity-best-practices-for-solidity-development-794e66ce7c8a
https://CFG.NINJA/

 FINDINGS

In this document, we present the findings and results of the smart contract security audit. The identified
vulnerabilities, weaknesses, and potential risks are outlined, along with recommendations for mitigating
these issues. It is crucial for the team to address these findings promptly to enhance the security and
trustworthiness of the smart contract code.

 Severity Found Pending Resolved

 Critical 1 1 0

 High 0 0 0

 Medium 0 0 0

 Low 2 2 0

 Informational 1 1 0

 Total 4 4 0

In a smart contract, a technical finding summary refers to a compilation of identified issues or vulnerabilities discovered during a
security audit. These findings can range from coding errors and logical flaws to potential security risks. It is crucial for the project owner
to thoroughly review each identified item and take necessary actions to resolve them. By carefully examining the technical finding
summary, the project owner can gain insights into the weaknesses or potential threats present in the smart contract. They should
prioritize addressing these issues promptly to mitigate any risks associated with the contract's security. Neglecting to address any
identified item in the security audit can expose the smart contract to significant risks. Unresolved vulnerabilities can be exploited by
malicious actors, potentially leading to financial losses, data breaches, or other detrimental consequences. To ensure the integrity and
security of the smart contract, the project owner should engage in a comprehensive review process. This involves understanding the
nature and severity of each identified item, consulting with experts if needed, and implementing appropriate fixes or enhancements.
Regularly updating and maintaining the smart contract's codebase is also essential to address any emerging security concerns. By
diligently reviewing and resolving all identified items in the technical finding summary, the project owner can significantly reduce the
risks associated with the smart contract and enhance its overall security posture.

Page 19 of 24CFG.NINJA

https://CFG.NINJA/

SOCIAL MEDIA CHECKS HealthyOcean.

Social Media URL Result

Website https://healthyocean.finance/ Pass

Telegram https://t.me/HealthyOceanBSC Pass

Twitter https://twitter.com/HealthyOceanBSC Pass

Facebook N/A

Reddit N/A N/A

Instagram N/A N/A

CoinGecko N/A N/A

Github N/A

CMC N/A N/A

Email N/A Contact

Other https://www.youtube.com/@HealthyOceanBSC Pass

From a security assessment standpoint, inspecting a project's social media presence is essential. It
enables the evaluation of the project's reputation, credibility, and trustworthiness within the community.
By analyzing the content shared, engagement levels, and the response to any security-related incidents,
one can assess the project's commitment to security practices and its ability to handle potential threats.

Social Media Information Notes:

Auditor Notes: Website needs a bit of improvement.

Project Owner Notes:

Page 20 of 24CFG.NINJA

https://CFG.NINJA/

ASSESSMENT RESULTS HealthyOcean.

 Score Rsesults

Review Score

Overall Score 81/100

Auditor Score 80/100

Review by Section Score

Manual Scan Score 49

SWC Scan Score 27

Advance Check Score 5

Our security assessment or audit score system for the smart contract and project follows a comprehensive evaluation
process to ensure the highest level of security. The system assigns a score based on various security parameters and
benchmarks, with a passing score set at 80 out of a total attainable score of 100.The assessment process includes a
thorough review of the smart contracts codebase, architecture, and design principles. It examines potential
vulnerabilities, such as code bugs, logical flaws, and potential attack vectors. The evaluation also considers the
adherence to best practices and industry standards for secure coding. Additionally, the system assesses the projects
overall security measures, including infrastructure security, data protection, and access controls. It evaluates the
implementation of encryption, authentication mechanisms, and secure communication protocols. To achieve a passing
score, the smart contract and project must attain a minimum of 80 points out of the total attainable score of 100. This
ensures that the system has undergone a rigorous security assessment and meets the required standards for secure
operation.

Page 21 of 24CFG.NINJA

https://CFG.NINJA/

 Important Notes for HLO

Only a few issues/vulnerabilities were found.

The SAFU Dev needs to enable trade.

A few functions are missing require and emit.

Contract by Trynos.

Auditor Score =80
Audit Passed

Page 22 of 24CFG.NINJA

https://CFG.NINJA/

 Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of
components that actagainst the nature of decentralization, such as explicit ownership or
specialized access roles incombination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate
different, more optimalEVM opcodes resulting in a reduction on the total gas cost of a
transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect
notion on howblock.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-
only functionsbeing invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain
edge cases that mayresult in a vulnerability.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment
on how to makethe codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet
contain different code,such as a constructor assignment imposing different require
statements on the input variables than a setterfunction.

Coding Best Practices

ERC 20 Conding Standards are a set of rules that each developer should follow to ensure
the code meet a set of creterias and is readable by all the developers.

Page 23 of 24CFG.NINJA

https://CFG.NINJA/

 Disclaimer

The purpose of this disclaimer is to outline the responsibilities and limitations of the security assessment and

smart contract audit conducted by Bladepool/CFG NINJA. By engaging our services, the project owner

acknowledges and agrees to the following terms:

1. Limitation of Liability: Bladepool/CFG NINJA shall not be held liable for any damages, losses, or expenses

incurred as a result of any contract malfunctions, vulnerabilities, or exploits discovered during the security

assessment and smart contract audit. The project owner assumes full responsibility for any consequences

arising from the use or implementation of the audited smart contract. 2. No Guarantee of Absolute Security:

While Bladepool/CFG NINJA employs industry-standard practices and methodologies to identify potential

security risks, it is important to note that no security assessment or smart contract audit can provide an

absolute guarantee of security. The project owner acknowledges that there may still be unknown

vulnerabilities or risks that are beyond the scope of our assessment. 3. Transfer of Responsibility: By

engaging our services, the project owner agrees to assume full responsibility for addressing and mitigating

any identified vulnerabilities or risks discovered during the security assessment and smart contract audit. It is

the project owner s sole responsibility to ensure the proper implementation of necessary security measures

and to address any identified issues promptly. 4. Compliance with Applicable Laws and Regulations: The

project owner acknowledges and agrees to comply with all applicable laws, regulations, and industry

standards related to the use and implementation of smart contracts. Bladepool/CFG NINJA shall not be

held responsible for any non-compliance by the project owner. 5. Third-Party Services: The security

assessment and smart contract audit conducted by Bladepool/CFG NINJA may involve the use of third-

party tools, services, or technologies. While we exercise due diligence in selecting and utilizing these

resources, we cannot be held liable for any issues or damages arising from the use of such third-party

services. 6. Confidentiality: Bladepool/CFG NINJA maintains strict confidentiality regarding all information

and data obtained during the security assessment and smart contract audit. However, we cannot guarantee

the security of data transmitted over the internet or through any other means. 7. Not a Financial Advice:

Bladepool/CFG NINJA please note that the information provided in the security assessment or audit

should not be considered as financial advice. It is always recommended to consult with a financial

professional or do thorough research before making any investment decisions.

By engaging our services, the project owner acknowledges and accepts these terms and releases

Bladepool/CFG NINJA from any liability, claims, or damages arising from the security assessment and smart

contract audit. It is recommended that the project owner consult legal counsel before entering into any

agreement or contract.

Page 24 of 24CFG.NINJA

https://CFG.NINJA/

